大家好,今天小编关注到一个比较有意思的话题,就是关于变压器激磁电感和漏感的问题,于是小编就整理了4个相关介绍变压器激磁电感和漏感的解答,让我们一起看看吧。
漏感加励磁电感等于什么?
漏感电压和励磁电感电压之和是原边电压
实际励磁电感产生的磁通,总会有少许会散漏在励磁电感外,也并不能通过磁芯传输到副边线圈,我们称为漏磁通,形成的电感也就是我们常常提到的漏感,漏感电压和励磁电感电压之和是原边电压(up=um+ux,um是励磁电感初去漏感两端电压,ux是漏感电压),所以漏感是串联在原边线圈中。
正激消磁绕组的工作原理?
正激电源在激磁期间同时向次级传送能量,在截止期间需要通过复位绕组向热端电源回馈能量来实现磁复位;反激电源在激磁期间只存储能源不向次级传递能源,在截止期间通过向次级传递能源来实现磁复位。 磁复位绕组主要是为了去磁。去磁方法很多种;三绕组去磁;谐振去磁;RCD去磁;有源去磁;另一方面磁复位绕组主要是在MOS管关断期间把漏感产生的能量返还回原边,防止磁饱和。
llc开关电源是什么?
LLC架构属于双管半桥谐振,采用谐振电感、励磁电感和谐振电容串联,故名LLC。采用零电压开关(ZVS)软开关技术,具有工作频率高、损耗小、效率高、体积小的优点,可提高充电器功率密度。
其谐振操作可实现全负载范围的软开关,减小开关损耗。从而成为高频和高功率密度设计的理想选择,适合固定电压输出,EMI特性更好。传统反激架构在开关管关闭的瞬间,变压器漏感生成的谐振尖峰需要RCD吸收电路来吸收,这会在一定程度上降低转换效率,以及开关损耗也会降低转换效率,从而不适合更大功率输出。
DCM模式,CCM模式指的是什么意思?
DCM断续模式:电流从零开始上升的三角波。
CCM连续模式:电流从某一非零值上升的侧梯形波。
DCM模式:负载小时初次级两侧电流分别为上升三角和下降三角波,如果是开关频率固定的它激式电源,次级将磁能释放完毕时开关管还未导通,这时初次级开关器件均关断,线圈与寄生电容产生衰减振荡,线圈两端电压低于输出电压,次级二极管关断,初次级均关断时线圈的振荡衰减较慢,虽然此时电压较高,但电流微小,直到开关管再次导通,如此循环下去。
由于参与振荡的是线圈电感,不单是漏感,所以振荡频率较低(比开关管关断瞬间的尖峰振荡频率低很多,开关管关断瞬间的尖峰是漏感与分布电容产生的高频衰减振荡)。
如果是RCC自激式电源,次级磁能释放完毕后马上转入开关管导通阶段,没有两侧均关断的衰减振荡过程,此时为BCM临界模式。CCM模式:如果是开关频率固定的它激式电源,负载较大时,稳压控制要保持输出电压不变,占空比加大,同时负载电流也较大,开关管关断后,次级二极管通过的电流较大,因输出电压不变,输出电流下降的坡度不变,会出现输出电流还未下降到0时,开关管再次导通,即线圈磁能未释放完毕激磁电流未复位到0,开关管电流在这个激磁电流的基础上再开始上升,因电源电压不变,开关管电流上升的坡度不变。
即初级电流上升和次级电流下降的坡度不变,但初级电流上升的起点和终点均抬高,后级下降的起点和终点也均抬高。
这样初级的输入能量加大,次级的输出能量加大。没有初次级均关断的衰减振荡过程。
如果是自激式开关电源,磁能释放完毕后立即转向开关管导通阶段,激磁电流复位到0。也就是说自激式开关电源不会工作在CCM模式。
到此,以上就是小编对于变压器激磁电感和漏感的问题就介绍到这了,希望介绍关于变压器激磁电感和漏感的4点解答对大家有用。