大家好,今天小编关注到一个比较有意思的话题,就是关于电感 电容 变压器的问题,于是小编就整理了2个相关介绍电感 电容 变压器的解答,让我们一起看看吧。
叠加定理电感和电容怎么处理?
使用叠加定理分析计算电路应注意,电压源不作用时应视为短路,电流源不作用时应视为断路;电路中的所有线性元件(包括电阻、电感和电容)都不予更动,受控源则保留在电路中。
电路的叠加定理指出:对于一个线性系统,一个含多个独立源的双边线性电路的任何支路的响应(电压或电流),等于每个独立源单独作用时的响应的代数和,此时所有其他独立源被替换成他们各自的阻抗。
该定理适用于由独立源、受控源、无源器件(电阻器、电感、电容)和变压器组成的线性网络(时变或静态)。
如何区分变压器和电感?
1. 传统变压器通过同时穿过原、副变线圈的磁场进行耦合,线圈可以看成多个包围磁感线的单匝线圈串联,从而通过原、副线圈的匝数变比控制电压输出。由于受限于磁性材料的饱和特性,一般传统变压器多用于交流电的变换,使磁芯工作在膝点内,保证较高的转换效率。
2. 开关电源通过控制电路中的电子开关的开闭来实现可控的电路拓扑变化,配合利用电感电容存储、释放能量来实现输出变换。开关电源主要可以分为AC-AC,AC-DC,DC-AC和DC-DC,能够实现各种变换。 以DC-DC为例:Buck电路可以实现降压,它的原理可以理解为,通过控制一个周期中电容充放电的时间比例来控制电场能量的储存和释放的时间比例,从而控制输出电压,可以感性地理解为,电源向电容充电,使电场能量增加,电容电压升高,然后在合适地时候通过开关动作,改变电路结构,使电容向负载释放电场能量,电容电压降低,然后又开始充电、放电······; Boost电路可以实现升压,它利用电感存储磁场能量,也是通过一个周期中对电感充、放电时间的比例来控制磁场能量的储存与释放,可以感性地理解为在一个周期中花了好久向电感中注入能量,使电感电流不断变大,达到合适的程度后再通过开关改变电路结构,使电流迅速减小,产生很高的电压,磁场能量释放。接着又开始下一个攒大招的周期······只要上述的周期够短(实际上电力电子开关可以做到),就可以使输出的波动被控制在令人满意的范围内。
3. 实际电路中常常是电力电子器件与磁偶变压器配合使用。由于开关电路可以实现很高的开关频率,输出很高频率的波形,减小了对后面变压器膝点磁通大小的要求,这使得高频变压器的体积、重量相较传统变压器得以大大减小。 电力电子专业的筒子们就是不断地在控制策略和电路拓扑中寻求更稳定更高效的变换方式。 电力电子就像一个超快速稳定的剪刀手,对波形进行各种剪切粘贴,形态各异、设计巧妙的电路拓扑实现各种波形变换······ 可惜答主以后读研不在电力电子方向了,但真的觉得电力电子蛮有意思.....大四狗答案仅供参考,欢迎指正!
变压器是功率器件,体积大份量重,分一次侧二次侧,至少两个绕组四个抽头,分高频变压器与低频变压器,因是电源,线径较粗,主要以输出电压与电流大小分类。
电感主要作用是谐振、带通(直通状态时)、陷波(对地状态时)、按工作频率会使用不同的磁芯。多为两个引线抽头。另外电感还有使电流连续和防短路作用。主要以工作频率分类。
互感线圈,扼流圈,升降压变压器,信号变压器等,很多外观接近,而实际作用不同。
一般外型相同,线径相同,Q值相同,感量相同,磁芯相同(同感量),理论上也是可以互换的,因为它们本质上是同一种东西。
到此,以上就是小编对于电感 电容 变压器的问题就介绍到这了,希望介绍关于电感 电容 变压器的2点解答对大家有用。