大家好,今天小编关注到一个比较有意思的话题,就是关于变压器附加损耗原理的问题,于是小编就整理了4个相关介绍变压器附加损耗原理的解答,让我们一起看看吧。
变压器空耗原理
一共分三部分产生:
1,铁芯损耗:铁芯磁化所引起的磁滞损耗以及涡流损耗
2,少部分铜损耗:电流通过绕组时产生的电阻损耗
3,附加损耗:铁损耗,铜损耗以外的损耗,比如变压器引线损耗,测量线路及表计损耗等。
在这些损耗中,铁芯损耗占97%以上,少部分铜损耗及其附加损耗不足3%
26、变压器的损耗与效率有什么关系?
变压器频率越高,效率越高,这句话要正确理解。
1、理想变压器的效率是100%,实际变压器之所以效率不能达到100%,主要是因为有铁耗和铜耗。
2、铁耗与铁芯有关,与铁芯的涡流损耗与迟滞损耗有关。相对而言,频率越高,铁芯的磁通密度越低,铁芯损耗越小,效率越高。
3、频率不能无限制的上升,频率过高,磁密过低,铁芯工作于弱磁区,变压器输入电流会产生严重的畸变。
4、频率上升之后,趋肤效应增强,绕组的等效直流电阻变大,变压器的铜耗变大,虽然铁耗降低,但是,整体效率不一定变高。
5、100Ghz的信号,由于电感的影响,变压器即便效率很高,但是,一定的电压下,已经很难产生较大的电流,变压器不能传递较大的能量,高效率失去意义。
电机拖动,为什么变压器的空载损耗可近似看成铁损耗,而短路损耗可近似看成铜损耗?
变压器铁损耗的大小决定于铁心中磁通密度的大小,铜损耗的大小决定决定于绕组中电流的大小。
变压器空载和短路时,输出功率都为零。即铜损耗与铁损耗之和。空载时,电源电压为额定值,铁心中磁通密度达到正常运行的数值,铁损耗也为正常运行时的数值。
而此时二次绕组中的电流为零,没有铜损耗,一次绕组中电流仅为励磁电流,远小于正常运行的数值,它产生的铜损耗相对于这时的铁损耗可以忽略不计,因而空载损耗可近似看成为铁损耗。
短路试验时,输入功率为短路损耗。此时一次、二次绕组电流均为额定值,铜损耗也达到正常运行时的数值,而电压大大低于额定电压,铁心中磁通密度也大大低于正常运行时的数值,此时铁损耗与铜损耗相比可忽略不计。因此短路损耗可近似看成铜损耗。
扩展资料:
当用额定电压施加于变压器的一个绕组上,而其余的绕组均为开路时,变压器所吸收的有功功率叫空载损耗。空载损耗又叫变压器的铁损,是指发生于变压器铁芯叠片内,周期性变化的磁力线通过材料时,由材料的磁滞和涡流产生的,其大小与运行电压和分接头电压有关。
当变压器的初级绕组通电后,线圈所产生的磁通在铁芯流动,因为铁芯本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁芯的断面上形成闭合回路并产生电流,好像一个旋涡所以称为“涡流”。
这个“涡流”使变压器的损耗增加,并且使变压器的铁芯发热变压器的温升增加。由“涡流”所产生的损耗我们称为“铁损”。
另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生的。
由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此进行描述,η=输出功率/输入功率。
加收变压器损耗电量与电价有何关系?
根据《供电营业规则》第74条的规定,高压供电的用户变压器损耗电量,应按变压器负荷中各类电量比例分摊成相应的损耗电量,然后分别按各类电价(高压侧电压等级电价)计算电费。
到此,以上就是小编对于变压器附加损耗原理的问题就介绍到这了,希望介绍关于变压器附加损耗原理的4点解答对大家有用。